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Abstract: New chiral monophosphine ligands 2-4 containing (qe-arene)chromium were 
prepared via the stereoselective ortho-lithiation of ((R)-NJV-dimethyl-l-phenylethylamine)- 
Cr(CO)3 (1). Asymmetric cross-coupling of 1-phenylethylmagnesium or -zinc reagent with 
vinyl bromides in the presence of palladium or nickel catalysts complexed with the chiral (t$- 
arene)chromium ligands gave the coupling products of up to 61% ee. 

There has been great interest in asymmetric synthesis catalyzed by chii phosphine-transition metal 

complexes,t and the preparation of chiral phosphine ligands which are capable of bringing about high enantio- 

selectivity is essential for development of the catalytic asymmetric synthesis. Chiral ferrocenylphosphines, 

which have a ferrocene planar chirality and functional groups on the side chain, have been proven to be highly 

enantioselective ligands for a variety of catalytic asymmetric reactions.24 Here we wish to describe the 

preparation of novel optically active phosphine ligands 2-4 which are analogous to the ferrocenylphosphines but 

contain (n’&ene)chmmitmr moiety and their use for the catalytic asymmetric cross-coupling.~ 
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The new chiral phosphine ligands are readily prepared by way of diasteteoselective lithiation of ((R)- 

iV,N-dimethyl-1-phenylethylamine)Cr(C0)3 ((It)-1) (Scheme 1). According to the procedure reported by 

Davies7 and Heppert* greups. (R)-1 (0.35 mmol) was metalated with t-butyllithium (0.42 mmol) in 5 mL of 

ether at -40 “C. TIE (0.3 mL) was added and the mixture was treated with ether (2 mL) solution of chloro- 

diphenylphosphine (0.70 mmol). Aqueous work-up followed by column chromatography on silica gel 

(hexandether = S/l) gavegO% yield ofdiastereomerically pun chit-al phosphine (R)-(.!+2.9Ju Yellow crystals 
of (R)-(S)-2 (mp 154 ‘C. (cc]@ -42 (c 1.1. chloroform)) were obtained by mcrystalhxadon from ether and 

hexane. The planar chiity of the (ue-arene)chromium moiety is deduced to be @Jl&om the stereochemistry 

in the lithiation of 1.7-9 where one of the diasteteotopic ortho hydtogens is selectively replaced. One of the thtee 

carbon monoxide molecules on the chromium of 2 was replaced by triphenylphosphine or trlmethyl phosphite 

under irradiation with a high pressure mercury lamp to give another phosphine ligand (R)-(S)-310 (49% yield) 

or (R)-(S)-410 (70% yield), respectively. 

The new optically active (r&uene)chromium-phosphines 2-4 were used as chiral ligands for the 

palladium- or nickel-catalyzed asymmetric cross-coupling reactions (Scheme 2). The reaction conditions and 

results obtained ate summarized in Table 1. Reaction of I-phenylethylmagnesium chloride (8) with vinyl 

bromide (lOa) in the pnsence of nickel catalyst, generated in situ by mixing anhydrous nickel chloride with 

ligand (R)-(S)-2, under tlm standard reaction conditions5 gave Q-3-phenyl-1-butene (lla) of 53% ee (entry 

1). The enantiomeric purity was determined by HPLC analysis (Sumichiral OA-1000 or OA-2000) of N- 

phenyl-2-phenylpropanamide, which was obtained by oxidation (KMnO&laI04) of the coupling product lla 

followed by anilide formation (PhNHflCC) of the resulting 2-phenylpropanoic acid. Use of zinc reagent 9 

increased the stetwselecti$ity to 61% ee (entry 2). Palladium complex !I,12 which was prepared from (R)-(s)-2 

Table 1. Catalytic Asymmetric Cross-Coupling of PhCH(Me)MCl (M = Mg (8) or Zn (9)) with Alkenyl 

Bromide 10.0 

PhCH(Me)MCl btomide catalyst yieldb %eeC 

entry (8) or (9) (18) (metal/l&and) product (5%) (config) 

1 8(M=Mg) 1Oa (R=H) NiCld(R)-(S)-2d lla 53 53 (s) 

2 9(M=zn) lOa(R=H) NiCld(R)-(S)-2d lla 44 61 Q 

3 S(M=Mg) lOa(R=H) 5 PdCMW-(021) lla 56 13 0 

4 9(M=Zn) lOa(R=H) 5 (PdCkd(R)+)-21) lla 67 61 Q 

5 8(M=Mg) lOb(R= Ph) 5 PdCMW-W-21) llb 81 43 (8 

6 9(M=Zn) lob (R = Ph) 5 G’dCMW-VI-21) llb 75 58 0 

7 9(M=Zn) lOa(R=H) 6 (PdClzl(R)-(031) lla 94 37 (S) 

8 9(M=Zn) lOb(R= Ph) 6 WCMRW)-31) llb 72 53 (9 

9 9(M=zn) lOa(R=H) 7 (PdC12[W-(W1) lla 72 17 (s) 

a All reactions were ear&d out at 0 “C for 18 h in ether and THP in the presence of 0.5 mol % of the 
catalyst unless othersvise noted. PhCH(Me)MCl/bromide = 2.5-3.0. b Isolated yield by distillation 
followed by preparative GLC (Silicone DCSSO). c Determined by HPLC analysis of N-phenyl-2- 
phenylpropanamide prepared by oxidation (KMnO4/NaIO4/K$G3/r-BuOH/H~) of coupling products 
11 followed by anilide formation (PhNH2/DCC) (see text). * Catalyst of 0.25 mol % was used. 
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(R)-(S)-PPFA 12 

and dichlorobis(aatonieiIc)palladium@). also catalyxed the ctoss-coupling reaction of the zinc teagent to give 

(S)-11~ of the same enantiomeric pm-by (61% cc) (entry 4). A little lower stereoselectivity was observed with 

palladium catalysts 6 and 7 (entries 7-P). It was shown by lH NMR that both the phosphorus and nitrogen 

atoms in the l&and of palladium complexes 5-7 am coordinated to the palladium forming a chelate.12 

The stereoselectivity attained here is comparable with those observed for the cross-coupling tea&on of 8 

in the presence of the chiral ferrucenylmonophosphine ligands represented by (R)-(S)-PPFA,sc which gave (8)- 

lla of 5668% ee. A chiral aminoallcylphosphine ligand, (R)-1-(2diphenylphosphinophenyl)ethyl-NJV- 

dimethylamine (12), which is analogous to (R)-(S)-2 but lacks the chromium coordination, has been qortedlf 

to be less enantioselective (40% ee) than 2. indicating that the tricarbonylchromium group coonhnated to the 

phenyl ring contributes to enhancing the stereoselectivity.t4~t5 
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