Tetrahedron: Asymmetry Vol. 3, No. 2, pp. 213-216, 1992 Printed in Great Britain

New Chiral Phosphine Ligands Containing (η⁶-Arene)chromium and Catalytic Asymmetric Cross-Coupling Reactions

Motokazu Uemura,* Ryuta Miyake, and Hikaru Nishimura

Faculty of Science, Osaka City University, Sugimoto 3-3-138, Sumiyoshi-ku, Osaka 558, Japan

Yonetatsu Matsumoto and Tamio Hayashi*

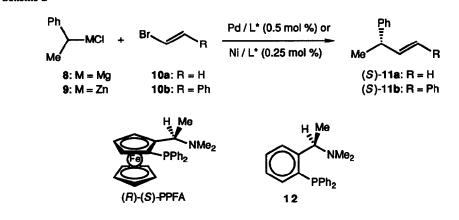

Catalysis Research Center and Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060, Japan

(Received 3 December 1991)

Abstract: New chiral monophosphine ligands 2-4 containing (η^{6} -arene)chromium were prepared via the stereoselective ortho-lithiation of ((R)-N,N-dimethyl-1-phenylethylamine)-Cr(CO)₃ (1). Asymmetric cross-coupling of 1-phenylethylmagnesium or -zinc reagent with vinyl bromides in the presence of palladium or nickel catalysts complexed with the chiral (η^{6} arene)chromium ligands gave the coupling products of up to 61% ee.

There has been great interest in asymmetric synthesis catalyzed by chiral phosphine-transition metal complexes,¹ and the preparation of chiral phosphine ligands which are capable of bringing about high enantioselectivity is essential for development of the catalytic asymmetric synthesis. Chiral ferrocenylphosphines, which have a ferrocene planar chirality and functional groups on the side chain, have been proven to be highly enantioselective ligands for a variety of catalytic asymmetric reactions.²⁻⁴ Here we wish to describe the preparation of novel optically active phosphine ligands 2-4 which are analogous to the ferrocenylphosphines but contain (η^6 -arene)chromium moiety and their use for the catalytic asymmetric cross-coupling.⁵

Scheme 1


The new chiral phosphine ligands are readily prepared by way of diastereoselective lithiation of ((*R*)-*N*,*N*-dimethyl-1-phenylethylamine)Cr(CO)₃ ((*R*)-1) (Scheme 1). According to the procedure reported by Davies⁷ and Heppert⁸ groups, (*R*)-1 (0.35 mmol) was metalated with *t*-butyllithium (0.42 mmol) in 5 mL of ether at -40 °C. THF (0.3 mL) was added and the mixture was treated with ether (2 mL) solution of chlorodiphenylphosphine (0.70 mmol). Aqueous work-up followed by column chromatography on silica gel (hexane/ether = 5/1) gave 80% yield of diastereomerically pure chiral phosphine (*R*)-(*S*)-2.^{9,10} Yellow crystals of (*R*)-(*S*)-2 (mp 154 °C, $[\alpha]_D^{19}$ -42 (*c* 1.1, chloroform)) were obtained by recrystallization from ether and hexane. The planar chirality of the (η^6 -arene)chromium moiety is deduced to be $S^{9,11}$ from the stereochemistry in the lithiation of 1,⁷⁻⁹ where one of the diastereotopic ortho hydrogens is selectively replaced. One of the three carbon monoxide molecules on the chromium of 2 was replaced by triphenylphosphine or trimethyl phosphite under irradiation with a high pressure mercury lamp to give another phosphine ligand (*R*)-(*S*)-3¹⁰ (49% yield) or (*R*)-(*S*)-4¹⁰ (70% yield), respectively.

The new optically active (η^{6} -arene)chromium-phosphines 2-4 were used as chiral ligands for the palladium- or nickel-catalyzed asymmetric cross-coupling reactions (Scheme 2). The reaction conditions and results obtained are summarized in Table 1. Reaction of 1-phenylethylmagnesium chloride (8) with vinyl bromide (10a) in the presence of nickel catalyst, generated in situ by mixing anhydrous nickel chloride with ligand (R)-(S)-2, under the standard reaction conditions⁵ gave (S)-3-phenyl-1-butene (11a) of 53% ee (entry 1). The enantiomeric purity was determined by HPLC analysis (Sumichiral OA-1000 or OA-2000) of *N*-phenyl-2-phenylpropanamide, which was obtained by oxidation (KMnO₄/NaIO₄) of the coupling product 11a followed by anilide formation (PhNH₂/DCC) of the resulting 2-phenylpropanoic acid. Use of zinc reagent 9 increased the stereoselectivity to 61% ee (entry 2). Palladium complex 5,¹² which was prepared from (R)-(S)-2

entry	PhCH(Me)MCl (8) or (9)	bromide (10)	catalyst (metal/ligand)	product	yield ^b (%)	% æ ^c (config)
1	8 (M = Mg)	10a (R = H)	NiCl ₂ /(<i>R</i>)-(<i>S</i>)-2 ^d	11a	53	53 (S)
2	9 (M = Zn)	10a (R = H)	NiCl ₂ /(R)-(S)-2 ^d	11a	44	61 (S)
3	8 (M = Mg)	10a (R = H)	5 $(PdCl_2[(R)-(S)-2])$	11a	56	13 (S)
4	9 (M = Zn)	10a (R = H)	5 (PdCl ₂ [(R)-(S)-2])	11a	67	61 (S)
5	8 (M = Mg)	10b (R = Ph)	5 (PdCl ₂ [(R)-(S)-2])	11b	81	43 (S)
6	9 (M = Zn)	10b (R = Ph)	5 $(PdCl_2[(R)-(S)-2])$	11b	75	58 (S)
7	9 (M = Zn)	10a (R = H)	6 (PdCl ₂ [(R)-(S)-3])	11a	94	37 (S)
8	9 (M = Zn)	10b (R = Ph)	6 $(PdCl_2[(R)-(S)-3])$	11b	72	53 (S)
9	9 (M = Zn)	10a (R = H)	7 (PdCl ₂ [(R)-(S)-4])	11a	72	17 (S)

Table 1. Catalytic Asymmetric Cross-Coupling of PhCH(Me)MCl (M = Mg(8) or Zn (9)) with Alkenyl Bromide 10.^a

^a All reactions were carried out at 0 °C for 18 h in ether and THF in the presence of 0.5 mol % of the catalyst unless otherwise noted. PhCH(Me)MCl/bromide = 2.5-3.0. ^b Isolated yield by distillation followed by preparative GLC (Silicone DC550). ^c Determined by HPLC analysis of N-phenyl-2-phenylpropanamide prepared by oxidation (KMnO₄/NaIO₄/K₂CO₃/t-BuOH/H₂O) of coupling products 11 followed by anilide formation (PhNH₂/DCC) (see text). ^d Catalyst of 0.25 mol % was used.

and dichlorobis(acetonitrile)palladium(II), also catalyzed the cross-coupling reaction of the zinc reagent to give (S)-11a of the same enantiomeric purity (61% ee) (entry 4). A little lower stereoselectivity was observed with palladium catalysts 6 and 7 (entries 7-9). It was shown by ¹H NMR that both the phosphorus and nitrogen atoms in the ligand of palladium complexes 5-7 are coordinated to the palladium forming a chelate.¹²

The stereoselectivity attained here is comparable with those observed for the cross-coupling reaction of 8 in the presence of the chiral ferrocenylmonophosphine ligands represented by (R)-(S)-PPFA,^{5c} which gave (S)-11a of 56-68% ee. A chiral aminoalkylphosphine ligand, (R)-1-(2-diphenylphosphinophenyl)ethyl-N,N-dimethylamine (12), which is analogous to (R)-(S)-2 but lacks the chromium coordination, has been reported¹³ to be less enantioselective (40% ee) than 2, indicating that the tricarbonylchromium group coordinated to the phenyl ring contributes to enhancing the stereoselectivity.^{14,15}

Partial financial support for this work was provided by the Research Cooperation Program in Catalysis Research Center, Hokkaido University.

REFERENCES AND NOTES

- For recent reviews on catalytic asymmetric reactions: a) Ojima, I.; Clos, N.; Bastos, C. Tetrahedron 1989, 45, 6901. b) Noyori, R.; Kitamura, M. In Modern Synthetic Methods, Scheffold, R., Ed.; Springer-Verlag, New York, 1989; Vol. 5, p 115. c) Blystone, S. L. Chem. Rev. 1989, 89, 1663. d) Consiglio, G.; Waymouth, R. M. Chem. Rev. 1989, 89, 257. e) Brunner, H. Synthesis 1988, 645. f) Brunner, H. Top. Stereochem. 1988, 18, 129. g) Asymmetric Synthesis; Morrison, J. D., Ed.; Academic, New York, 1985; Vol. 5.
- 2 For reviews: a) Hayashi, T.; Kumada, M. Acc. Chem. Res. 1982, 15, 395. b) Hayashi, T. Pure Appl. Chem. 1988, 60, 7.
- 3 For examples: a) Hayashi, T.; Yamazaki, A. J. Organomet. Chem. 1991, 413, 295. b) Hayashi, T.; Yamamoto, A.; Ito, Y.; Nishioka, E.; Miura, H.; Yanagi, K. J. Am. Chem. Soc. 1989, 111, 6301. c) Hayashi, T.; Hayashizaki, K.; Kiyoi, T.; Ito, Y. J. Am. Chem. Soc. 1988, 110, 8153.
- 4 a) Togni, A.; Pastor, S. D. J. Org. Chem. 1990, 55, 1649. b) Togni, A.; Häusel, R. Synlett 1990, 633, and references cited therein.

- 5 a) Hayashi, T.; Yamamoto, A.; Hojo, M.; Ito, Y. J. Chem. Soc., Chem. Commun. 1989, 495. b) Hayashi, T.; Hagihara, T.; Katsuro, Y.; Kumada, M. Bull. Chem. Soc. Jpn. 1983, 56, 363. c) Hayashi, T.; Konishi, M.; Fukushima, M.; Mise, T.; Kagotani, M.; Tajika, M.; Kumada, M. J. Am. Chem. Soc. 1982, 104, 180. d) Hayashi, T.; Konishi, M.; Fukushima, M.; Kanehira, K.; Hioki, T.; Kumada, M. J. Org. Chem. 1983, 48, 2195.
- a) Consiglio, G.; Indolese, A. J. Organomet. Chem. 1991, 417, C36, and their previous reports cited therein.
 b) Cross, G.; Vriesema, B. K.; Boven, G.; Kellogg, R. M.; van Bolhuis, F. J. Organomet. Chem. 1989, 370, 357, and their previous reports cited therein.
- 7 Blagg, J.; Davies, S. G.; Goodfellow, C. L.; Sutton, K. H. J. Chem. Soc., Perkin Trans I, 1987, 1805.
- 8 a) Heppert, J. A.; Thomas-Miller, M. E.; Milligan, M. L.; Velde, D. V.; Aubé, J. Organometallics 1988, 7, 2581. b) Heppert, J. A.; Aubé, J.; Thomas-Miller, M. E.; Milligan, M. L.; Takusagawa, F. Organometallics, 1990, 9, 727.
- 9 Preparation of racemic phosphine (R^*) - (S^*) -2 has been reported (ref 8).
- 10 (*R*)-(*S*)-2: mp 154 °C (ether/hexane). $[\alpha]_D^{19}$ -42 (*c* 1.1, chloroform). ¹H NMR (CDCl₃): δ 1.10 (d, J = 7 Hz, 3 H), 1.73 (s, 6 H), 4.48 (m, 1 H), 4.96 (d, J = 6 Hz, 1 H), 5.10 (t, J = 6 Hz, 1 H), 5.14 (m, 1 H), 5.51 (t, J = 6 Hz, 1 H), 7.31 (m, 10 H). (*R*)-(*S*)-3: mp 151 °C (ether/hexane). $[\alpha]_D^{22}$ -344 (*c* 0.58, chloroform). ¹H NMR (CDCl₃): δ 0.85 (d, J = 6 Hz, 3 H), 1.65 (s, 6 H), 3.80 (m, 1 H), 4.45-4.70 (m, 4 H), 7.25-7.60 (m, 25 H). (*R*)-(*S*)-4: mp 117 °C (ether/hexane). $[\alpha]_D^{26}$ -381 (*c* 0.32, chloroform). ¹H NMR (CDCl₃): δ 1.10 (d, J = 7 Hz, 3 H), 1.72 (s, 6 H), 3.48 (d, J = 11 Hz, 9 H), 4.50 (m, 1 H), 4.69 (d, J = 6 Hz, 1 H), 4.80 (t, J = 6 Hz, 1 H), 4.86 (m, 1 H), 5.20 (q, J = 6 Hz, 1 H), 7.26-7.41 (m, 10 H).
- 11 The planar chirality of the (η⁶-arene)chromium is designated in analogy with that of ferrocenylphosphines (ref 2,3). See also, Marquarding, D.; Klusacek, H.; Gokel, G.; Hoffmann, P.; Ugi, I. J. Am. Chem. Soc. 1970, 92, 5389. For the description of the chirality of (η⁶-arene)chromium complexes according to the Cahn-Ingold-Prelog rule, see Solladié-Cavallo, A. In Advances in Metal-Organic Chemistry, Libeskind, L. S., Ed.; JAI Press Inc., Greenwich, Conneticut, 1989; Vol. 1, p 99.
- 12 **5** (PdCl₂[(*R*)-(*S*)-2]): mp 153 °C (ether/dichloromethane). $[\alpha]_D^{15} +786$ (*c* 0.18, chloroform). ¹H NMR (CDCl₃): δ 1.32 (d, *J* = 6 Hz, 3 H), 2.80 (s, 3 H), 3.39 (s, 3 H), 3.68 (m, 1 H), 5.01-5.20 (m, 3 H), 5.82 (m, 1 H), 7.45-7.72 (m, 8 H), 8.65 (m, 2 H). **6** (PdCl₂[(*R*)-(*S*)-3]): mp 184 °C (ether/dichloromethane). $[\alpha]_D^{15} +1348$ (*c* 0.14, chloroform). ¹H NMR (CDCl₃): δ 1.13 (d, *J* = 6 Hz, 3 H), 2.70 (s, 3 H), 3.29 (s, 3 H), 3.61 (m, 1 H), 4.03 (m, 1 H), 4.45 (m, 1 H), 4.84 (m, 2 H), 7.32-7.70 (m, 23 H), 8.65 (m, 2 H). 7 (PdCl₂[(*R*)-(*S*)-4]): mp 153 °C (ether/dichloromethane). $[\alpha]_D^{14} +1540$ (*c* 0.15, chloroform). ¹H NMR (CDCl₃): δ 1.30 (d, *J* = 6 Hz, 3 H), 2.80 (s, 3 H), 3.31 (s, 3 H), 3.51 (d, *J* = 11 Hz, 9 H), 3.60-3.75 (m, 1 H), 4.68-4.82 (m, 3 H), 5.55 (m, 1 H), 7.35-7.69 (m, 8 H), 8.80 (m, 2 H).
- 13 Kreuzfeld, H.-J.; Döbler, C.; Abicht, H.-P. J. Organomet. Chem. 1987, 336, 287.
- 14 The effect of Cr(CO)₃ complexation in chiral catalysts on enantioselectivity has also been observed in the addition of diethylzinc to an aldehyde: Uemura, M.; Miyake, R.; Hayashi, Y. J. Chem. Soc., Chem. Commun. in press.
- 15 For reviews on the chiral (n⁶-arene)chromium complexes: a) Davies, S. G.; Coote, S. J.; Goodfellow, C. L. In Advances in Metal-Organic Chemistry, Libeskind, L. S., Ed.; JAI Press Inc., Greenwich, Conneticut, 1991; Vol. 2, p 1. b) Uemura, M. In Advances in Metal-Organic Chemistry, Libeskind, L. S., Ed.; JAI Press Inc., Greenwich, Conneticut, 1991; Vol. 2, p 195.